点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:500快三-500快三
首页>文化频道>要闻>正文

500快三-500快三

来源:500快三2023-12-14 17:48

  

“一个VIP账号只能登录一台手机”,视频平台规定合理吗******

  中新网1月11日电(中新财经记者 吴涛)近日,“优酷更改会员登录规则”登上微博热搜。有网友称,用户权益较此前“缩水”。但优酷方面称,优酷VIP会员协议早有明确规定。

  这样的规定是否合理?

优酷微博截图。

  一个账号只能登录一台手机?

  针对部分用户关心的优酷账号登录问题,优酷近日回应称,优酷VIP协议规定,用户账号最多可同时登录3台设备,其中包含:手机端App1个、Pad端App1个、电视端3个、电脑客户端1个、网页端1个、车载端1个、其他端1个。优酷VIP用户同一时间可在2台设备观看,酷喵VIP用户同一时间可在3台设备观看。

  这意味着,一个优酷VIP会员账号只能登录一台手机。

  优酷表示,作出这样的规定是“为保护用户账号安全,打击黑灰产,并且考虑到绝大多数用户的使用习惯”。

  不过,很多网友并不买账,纷纷“吐槽”,“一家三人追剧,难道还要开三个会员?”“把心思多用在创新上。”“一家人一起追剧算什么黑色产业链啊。”

  不同平台账号可登录几台手机?

  记者查询多个长视频平台发现,目前多数在线视频服务商未对用户进行“一个会员账号只能登录一台手机”的限制。

  腾讯视频系列会员服务协议显示,同一个账号最多可以在五个设备,“设备”指包括但不限于手机端、电脑端、平板电脑端、网页端和电视端等终端设备,同一时间内同一账号最多在两个设备上登录及使用。

  爱奇艺VIP会员服务协议规定,同一个VIP会员账号最多可登录的终端上限为5个,其中分设备限制为:手机端App 2个、Pad端App 1个、电脑端客户端1个、网页端1个、电视端2个、VR端1个、车载端1个,智能家居端1个。

  芒果TV会员服务协议规定,同一个帐号最多可以在四个设备(“设备”指包括但不限于计算机及移动电话、平板电脑等手持移动终端设备)上使用,支持移动端、电脑端同时两台在线,电视端同时两台在线,且同一时间内同一帐号最多在两个设备上使用。

  B站大会员服务协议则没有限制登录大会员设备的个数,只是规定用户不得采取出售、转让、盗用、租赁其他用户账户等方式进行大会员注册或通过出售、转让、盗用、转借、租赁其他大会员账户等方式享用大会员。

  限制登录设备数量合理吗?

  那么,优酷对VIP会员账号限制登录设备数量是否有法律依据?

  北京云嘉律师事务所律师赵占领对中新财经表示,视频网站通过协议约定及技术方式对于用户VIP会员账号进行限制,这本身并不违规。

优酷VIP会员服务协议截图。

  值得注意的是,记者发现,优酷VIP会员服务协议及酷喵会员服务协议都进行了更新,两份协议的最新版本生效时间均为2022年12月20日。

  有消息援引优酷客服的话称,“一个优酷VIP会员只能登录一台手机”的规则变更时间是2022年12月20日,原因是"系统更新"。

  赵占领指出,视频网站一般会在用户协议中约定,平台制定的规则也是协议的组成部分,网站对于平台规则或协议内容进行变更时应通过邮件、网站公式等方式告知,用户若不同意修改则应退出使用平台服务,若继续使用则视为同意这种变更。

  不过,也有报道注意到,视频账号的使用确实存在“黑灰产”问题。

  《北京日报》的报道显示,存在聚合平台售卖低价视频账号的情况。亦有业内人士透露,其背后存在多个有组织的个人或团伙使用群控手机等手段,注册账户、批量购买会员,并在第三方平台上进行倒卖、拆卖的情况。

  有业内人士认为,优酷此举确实可能在一定程度上限制视频账号“黑灰产”问题,但同时也会影响用户亲友间免费账号的共享。

  对此,你怎么看?(完)

  搜索

复制

                                          • 500快三

                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

                                              相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

                                              你或身边人正在用的某些药物,很有可能就来自他们的贡献。

                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                              2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

                                              一、夏普莱斯:两次获得诺贝尔化学奖

                                              2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

                                              今年,他第二次获奖的「点击化学」,同样与药物合成有关。

                                              1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                              过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

                                              虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

                                              虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

                                              有机催化是一个复杂的过程,涉及到诸多的步骤。

                                              任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

                                              不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

                                              为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

                                              点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

                                              点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

                                              夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

                                              大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

                                              大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

                                              大自然的一些催化过程,人类几乎是不可能完成的。

                                              一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

                                               夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

                                              大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

                                              在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

                                              其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

                                              诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                              夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

                                              他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

                                              「点击化学」的工作,建立在严格的实验标准上:

                                              反应必须是模块化,应用范围广泛

                                              具有非常高的产量

                                              仅生成无害的副产品

                                              反应有很强的立体选择性

                                              反应条件简单(理想情况下,应该对氧气和水不敏感)

                                              原料和试剂易于获得

                                              不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

                                              可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

                                              反应需高热力学驱动力(>84kJ/mol)

                                              符合原子经济

                                              夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

                                              他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

                                              二、梅尔达尔:筛选可用药物

                                              夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

                                              他就是莫滕·梅尔达尔。

                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                              梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

                                              为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

                                              他日积月累地不断筛选,意图筛选出可用的药物。

                                              在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

                                              三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

                                              2002年,梅尔达尔发表了相关论文。

                                              夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                              三、贝尔托齐西:把点击化学运用在人体内

                                              不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                              虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

                                              诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

                                              她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

                                              这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

                                              卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

                                              20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

                                              然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

                                              当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

                                              后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

                                              由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

                                              经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

                                              巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

                                              虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

                                              就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

                                              她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

                                              大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                              2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                              贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

                                              在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

                                              目前该药物正在晚期癌症病人身上进行临床试验。

                                              不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

                                            「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

                                              参考

                                              https://www.nobelprize.org/prizes/chemistry/2001/press-release/

                                              Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

                                              Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

                                              Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

                                              https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

                                              https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

                                              Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

                                              (文图:赵筱尘 巫邓炎)

                                            [责编:天天中]
                                            阅读剩余全文(

                                            相关阅读

                                            推荐阅读
                                            500快三吴京黄渤沈腾韩寒坐上公安部新闻发布会主席台
                                            2023-11-04
                                            500快三衡阳书记:政府要给企业提供母亲式服务
                                            2024-03-15
                                            500快三女子价值9000元的宠物鸡 被人偷宰准备下锅(图)
                                            2024-06-22
                                            500快三上海车展3大造车新势力新车
                                            2023-12-09
                                            500快三被肯豆的针织衫街拍美到
                                            2024-03-14
                                            500快三压倒土巴兔IPO的稻草是什么?
                                            2023-12-10
                                            500快三 乒联世界排名马龙重返前五 丁宁樊振东仍然领跑
                                            2023-09-20
                                            500快三日本人十连休假期出国旅客数将创新高 来中国的最多
                                            2023-08-29
                                            500快三 牛人”为什么要加班?
                                            2023-12-01
                                            500快三潘辰获新浪杯海外站亚军
                                            2024-03-11
                                            500快三四百万年钟乳石遭恶意破坏 三男子砸断后偷走
                                            2024-02-14
                                            500快三 狐观美国 | 超半数中等收入的老年人十年后付不起护理费用
                                            2024-01-20
                                            500快三本田思域TYPE R乐高版 1:1的大玩具
                                            2024-01-04
                                            500快三读完这52本书人生不惊慌
                                            2023-10-16
                                            500快三斯里兰卡内阁大换血 警察总长拒绝辞职后被强制离岗
                                            2024-01-26
                                            500快三5.9秒破百价格还不贵 试驾名爵6最高性能车
                                            2023-08-20
                                            500快三 西甲-西班牙人前瞻:武磊盼延续进球势头 定欧战命运
                                            2024-02-22
                                            500快三国产纪录片要当好"国家的相册"
                                            2024-03-01
                                            500快三IAEA称伊朗更改福尔多核设施离心机互连方式 伊朗否认
                                            2024-06-28
                                            500快三刘诗诗新剧真的很赶客
                                            2024-01-17
                                            500快三高校涉嫌虚假招生 官方:已责成并督促提出解决办法
                                            2023-09-20
                                            500快三解答所有佛学疑问《佛祖都说了些什么 》
                                            2023-10-21
                                            500快三韩春雨的“基因剪刀”又复活了?曾卷入舆论漩涡
                                            2024-04-05
                                            500快三 继王者荣耀后,腾讯又出现象级手游?模仿国外大作让死宅走出家门
                                            2023-10-19
                                            加载更多
                                            500快三地图